Abstract

We present the studies carried out on the transport properties of some membranes obtained from synthetic polymers: polyurethane and ethylene-vinyl acetate copolymer, for use in the development of transdermal therapeutic systems with limiting membranes of speed. The properties of drug active substances transport through membranes were highlighted by performing studies with a diffusion cell. Experimental drug active substances were paracetamol and tetracycline. The experimental data obtained was processed using a general mathematical model for drug release from non-porous, non-swellable transdermal devices, which starts from Fick�s second law and has terms that also take into account the possibility of retaining the drug in the membrane polymer. Even though the mathematical model does not take into account neither the swelling phenomenon nor the possibility of membrane erosion, a good agreement between model and experimental data was obtained. The values of effective diffusion coefficients of drug in the polymeric membranes were also determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.