Abstract

Non-peptidic thrombin inhibitors (TIs; 177 compounds) with diverse groups at motifs P1 (such as oxyguanidine, amidinohydrazone, amidine, amidinopiperidine), P2 (such as cyanofluorophenylacetamide, 2-(2-chloro-6-fluorophenyl)acetamide), and P3 (such as phenylethyl, arylsulfonate groups) were studied using molecular modeling to analyze their interactions with S1, S2, and S3 subsites of the thrombin binding site. Firstly, a protocol combining docking and three dimensional quantitative structure–activity relationship was performed. We described the orientations and preferred active conformations of the studied inhibitors, and derived a predictive CoMSIA model including steric, donor hydrogen bond, and acceptor hydrogen bond fields. Secondly, the dynamic behaviors of some selected TIs (compounds 26, 133, 147, 149, 162, and 177 in this manuscript) that contain different molecular features and different activities were analyzed by creating the solvated models and using molecular dynamics (MD) simulations. We used the conformational structures derived from MD to accomplish binding free energetic calculations using MM-GBSA. With this analysis, we theorized about the effect of van der Waals contacts, electrostatic interactions and solvation in the potency of TIs. In general, the contents reported in this article help to understand the physical and chemical characteristics of thrombin-inhibitor complexes.

Highlights

  • Thromboembolic diseases are among the principal causes of mortality in the world

  • The high root mean square deviation (RMSD) value for compound 13 was due to a small displacement of P2 group, and a different orientation of the P3 group of the docked conformation with respect to the conformation in the crystallographic structure

  • We report a theoretical study on drug design area for thrombin inhibitors (TIs)

Read more

Summary

Introduction

Thromboembolic diseases are among the principal causes of mortality in the world. Vein thrombosis can progress to pulmonary embolism. These disorders, identified with the term venous thromboembolism (VTE), affect several million people around the world [1]. VTE is the third leading cause of cardiovascular-related death, after myocardial infarction and stroke [2]. The central role of the serine protease thrombin in thrombosis and haemostasis makes it an attractive target for antithrombotic therapy [3]. Thrombin catalyzes the conversion of soluble fibrinogen to insoluble fibrin in the clotting cascade, and acts on other substrates such as PLOS ONE | DOI:10.1371/journal.pone.0142774. Thrombin catalyzes the conversion of soluble fibrinogen to insoluble fibrin in the clotting cascade, and acts on other substrates such as PLOS ONE | DOI:10.1371/journal.pone.0142774 November 24, 2015

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.