Abstract

The reasons for the destruction of the chassis main cross member made of alloy VT22 are considered and analyzed in bench test conditions. The chemical composition, mechanical properties, as well as macro- and microstructure of the material were studied. The tests of the cross-arm material for crack resistance and low-cycle fatigue (LCF) with the determination of the durability were carried out. The results of analysis proved that material meets the declared performance characteristics. A fractographic study of the traverse fracture showed that the fracture occurred from several foci according to the fatigue mechanism. The length of the longest fatigue crack was 1.7 mm and the critical stress intensity factor KIc was thus attained. Proceeding from the dimensions of the part at the site of fracture, the maximum crack length and the value of the critical stress intensity factor obtained experimentally KIc = 56.5 MPa • m1/2, we have calculated the nominal tensile stress at the moment of fracture. The calculated value of the nominal stresses is 1022 MPa, which is comparable to the yield strength of the material (1100 MPa). A high level of tensile stresses in the loading cycle is considered the most probable reason for the destruction of the chassis main cross member in the conditions of bench tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call