Abstract
Final stage of the degradation of the external quantum efficiency of AlGaN/GaN UV light-emitting diodes (LEDs), grown by chloride-hydride vapor-phase epitaxy, and high-power InGaN/GaN blue LEDs, produced by metal-organic vapor-phase epitaxy, has been comparatively studied. It is shown that one of these processes leading to a decrease in the quantum efficiency for both types of LEDs is the local defect formation involving the Gold-Weisberg mechanism in a system of extended defects. To prolong the service life of AlGaN/GaN UV LEDs to more than 2000 h, it is necessary to improve the nanostructural arrangement of the material of light-emitting structures and determine the contribution from the AlGaN composition disorder to the degradation of the external quantum efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.