Abstract

A number of quinones have been shown to be efficient anticancer agents. However, some mechanisms of their action, in particular cell signaling are not well understood. The aim of this study was to partly fill this gap by characterizing the mode of cytotoxicity of 2,5-diaziridinyl-3,6-dimethyl-1,4-benzoquinone (MeDZQ) in malignant mouse hepatoma cells (MH-22A) with regard to the expression and activation of main molecules in MAPK cell signaling pathway. The study revealed unequal roles of MAP kinases in MeDZQ-induced cell death: the compound did not induce significant changes in ERK expression or its phosphorylation; JNK appeared to be responsible for cell survival, however, p38 kinase was shown to be involved in cell death. In order to assess the enzymatic activation mechanisms responsible for the action of MeDZQ, we have also found that the antioxidant N,N'-diphenyl-p-phenylene diamine, the iron-chelating agent desferrioxamine, and DT-diaphorase inhibitor, dicoumarol, partly protected the cells from MeDZQ cytotoxicity. It points to parallel oxidative stress and bioreductive alkylation modes of the cytotoxicity of MeDZQ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.