Abstract

Feldspathic glass–ceramics reinforced with leucite are usually used in dental prosthesis. This study focused on leucite crystallization kinetics due to its importance to the end product of a dental crown processing. Leucite grains were nucleated and grown from feldspathic glass frit powders with particle size smaller than 45 μm. The nucleation and crystallization kinetics of leucite crystals in the glass matrix was investigated under isothermal and non-isothermal conditions through differential thermal analysis. The samples were also characterized by X-ray diffraction and scanning electron microscopy. The temperature of maximum nucleation rate was determined from the DTA curves of samples heat treated at different temperatures. The activation energy (E) of leucite crystallization was determined by the Kissinger method and the Avrami parameter (n) indicated that surface crystallization is the dominant mechanism in the glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.