Abstract
Extensive experimentation was performed to obtain flow boiling critical heat flux data in single stainless steel microtubes with diameters from 0.286 to 0.700 mm over a wide range of mass fluxes, inlet subcoolings, and exit pressures for two different working fluids (water and R-123). The effect of different operating parameters – mass flux, inlet subcooling, exit quality, heated length and diameter – were assessed in detail (Part I of the paper). The conventional DNB-type behavior is observed in the high subcooled region, and the typical dryout type behavior is seen in the high-quality saturated region when the flow is completely annular. The flow in transitional flow patterns (churn–annular or slug–annular) causes a peculiar increase of CHF with exit quality. Also, the increased void fraction near the saturated region in subcooled boiling results in increased subcooled CHF values. Part II of the paper deals with comparison of data with existing correlations and development of a new correlation to predict the CHF condition in the subcooled liquid region.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.