Abstract

PurposePolypyrrole (PPy) and PPy/metal oxide nanocomposites were synthesized by oxidative polymerization process, and its corrosion protection ability was studied by immersion test and electrochemical corrosion studies in 1 per cent HCl and 3.5 per cent NaCl solution.Design/methodology/approachThe prepared composites were loaded in acrylic resin and subsequently coated on a mild steel surface. The characterization of the polymer composites using FT-IR, UV-vis, XRD and FE-SEM with EDS analysis confirmed the interaction between PPy and metal oxide nanoparticles. The PPy nanoparticles were less protected on the mild steel, but the nanocomposite coating with metal oxide nanoparticles dramatically increased the corrosion resistance.FindingsAccording to the corrosion protection ability of the coating, it was demonstrated that the acrylic resin coating composed of PPy/metal oxide nanocomposites was highly efficient in protecting the mild steel compared to the PPy nanoparticles. The highest protection efficiency was obtained by PPy/TiO2 nanocomposites with acrylic resin coating.Originality/valueTo the best of the authors’ knowledge, this paper consists of original, unpublished work which is not under consideration for publication elsewhere and that all the co-authors have approved the contents of this manuscript and submission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call