Abstract

During wire explosion, along with striations (a regular structure with alternating lower and higher density bands), low-density regions the characteristic axial size of which differs substantially from that of striations and can reach 1–2 mm are also observed in the discharge channel. Such irregular structures came to be known as “gaps” (D. B. Sinars et al., Phys. Plasmas 8, 216 (2001)). In the present study, the mechanism of the formation of core gaps during explosions of 25- and 50-μm-diameter copper and nickel wires in air is investigated. It is shown that the specific energy deposited in the gap region substantially exceeds the average specific energy deposited in the wire material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call