Abstract

Silicides and sulfides of transition metals attract great attention of researchers because of a wide spectrum of interesting magnetic, electronic, and optical properties. The crystal structure of FeSi, MnSi, and CoSi silicides is P213(B20), whereas FeS2, CoS2, and MnS2 sulfides have a structure of pyrite Pa3. Despite the great interest in these systems and the cubic symmetry of crystals, the structure and compressibility of these compounds at high pressures are still insufficiently studied. There is a significant spread (more than a factor of two!) in the bulk modulus and its pressure derivative for a single compound. Most studies were performed under nonhydrostatic conditions. In this work, the compressibility of FeSi and MnSi silicides (at pressures up to 35 GPa) and CoS2 sulfide (up to 22 GPa) has been studied by the X-ray diffraction method in a diamond anvil cell with the use of helium as the softest pressure-transmitting medium. The values obtained for the bulk modulus and its derivative—B = 178 ±3 GPa and Bp = 5.6 ± 0.5 for FeSi, B = 167 ± 3 GPa and Bp' = 4.6 ± 0.5 for MnSi, and B = 94 ± 2 GPa and Bp' = 6.9 ± 0.5 for CoS2—can be considered as the most reliable and can be used to test numerous theoretical models. The results for the compressibility of FeSi are important for the verification of models of the Earth’s core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call