Abstract

The vibration control is an important area in the dynamic of structures that seeks to reduce the amplitude of structural responses in certain critical frequency ranges. Currently, the scientific development leads to the application of some actuators and sensors technologically superior comparing to the same features available on the market. For developing these advanced sensors and actuators, smart materials that can change their mechanical properties when subjected to certain thermomechanical loads can be employed. In this context, Shape memory alloys (SMAs) may be used for developing dynamic vibration dampers which are capable of acting on the system providing proper tuning of the excitation frequency and the natural frequency. This paper aims to analyze the behavior of the stiffness and damping of a SMA helical coil spring actuator coupled to a mechanical system of one degree of freedom (1 DOF) subjected to an unbalanced excitement force and a temperature control system. By analyzing the effect of these parameters on the structural response and considering the concept of complex stiffness, it can be possible to predict the system's behavior within certain acceptable ranges of vibration, already in the design phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.