Abstract

The mechanism of cyclohexane dehydrogenation catalyzed by the cationic dimer Ni2 (+) has been investigated at the B3LYP level of density functional theory. The first dehydrogenation occurs readily (it is exothermic by 30kcal/mol), whereas the second and third dehydrogenations show weaker exothermicity than the first (23 and 21kcal/mol, respectively). These three hydrogenations corresponding to the total dehydrogenation of one face of cyclohexane mainly proceed in the doublet state due to the presence of significant minimum-energy crossing points (MECPs). In addition, because the elimination of non-negligible amounts of [H2,2D2] and [2H2,D2] in this reaction was also observed in a previous experiment, we calculated a flip mechanism which would yield results that agree with those experimental results. This flip process includes two MECPs, meaning that the reaction mainly proceeds along the doublet potential energy surface but finishes in the quartet state. The rate-limiting step ((2)IM9 → (2)TS9/10 → (2)IM10) of the flip process is endothermic by 3kcal/mol and the barrier to this step is 33kcal/mol. Our calculations indicate that one-face dehydrogenation is a more favorable channel than the flip one. We excluded the possibility that eliminations of [H2,2D2] or [D2,2H2] could proceed through a mechanism involving Ni2 (+) dissociation, or that [H-D] scrambling could occur through (2)TS11/13 ((4)TS12/15), due to the large amounts of energy required. In the dissociation of (2)IM19, (2)[(H2)Ni2(C6H6)](+), a molecule of hydrogen first dissociates, leaving a final product of (2)[Ni2(C6H6)](+). Neither C6H6 nor (H2)Ni2 (+) can easily dissociate from (2)IM19 due to π backdonation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.