Abstract

This work aims to investigate the combustion mechanism for a pyrotechnic delay composition (PDC), consisting of zinc powder as a fuel and KMnO4 as an oxidising agent. For this purpose, the compositions were thermally conditioned at several set temperatures, chosen based on our previous work. Tests were also performed for post-combustion residues obtained via combustion of the PDCs in a manometric bomb. The samples were examined by scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Furthermore, the obtained results were correlated with previous studies by the authors and compared with data available in the literature. On the basis of tests carried out for thermally conditioned samples, a combustion mechanism was determined for Zn/KMnO4 as a function of temperature. The results show that the combustion process dynamics are independent of equilibrium ratio and limited mainly by diffusion of liquid fuel into the solid oxidising agent. Moreover, it has been revealed that Raman spectroscopy can be effectively used to determine combustion mechanisms for pyrotechnic compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.