Abstract

The equilibrium constants of the liquid-phase dehydration of 1-hexanol to dihexyl ether (DNHE) and water were determined in the temperature range of (423 to 463) K on Amberlyst 70. The equilibrium constants of the two main side reactions, DNHE decomposition to 1-hexene and 1-hexanol and isomerization of 1-hexene to 2-hexene, were also studied. The etherification reaction proved to be slightly exothermic, with an enthalpy change of reaction of −(9.5 ± 0.2) kJ·mol−1 at 298 K. From this value, the standard formation enthalpy and molar entropy of DNHE were computed to be −(478.6 ± 0.8) kJ·mol−1 and (517.4 ± 0.5) J·K−1·mol−1, respectively. A correction concerning the effect of pressure on the entropy proved to be necessary when computing liquid-phase entropy from gas-phase data. The isomerization of 1-hexene to 2-hexene is exothermic, whereas the decomposition of DNHE is endothermic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.