Abstract

In actual PEM fuel cell systems, the coolant flow rate is generally controlled to maintain a preset temperature at the coolant outlet. This implies that a change in coolant supply flow rate is a good early indicator of a malfunctioning PEM fuel cell stack and system components. In this study, various fuel cell malfunctions are simulated based on the practical coolant flow control strategy by using a three-dimensional, two-phase, multiscale PEM fuel cell model developed in our previous studies. The focus is on analysis of the characteristics of coolant flow rate change along with voltage degradation in various fuel cell malfunction cases. The model predictions show that in general, the coolant flow rate tends to increase proportionally with the degree of voltage degradation, but the increase in temperature inside the membrane electrode assembly (MEA) is not always related to the voltage drop and is influenced more directly by local current density distribution. Although the present numerical comparison between the normal and malfunctioning cases is conducted at the low current density of 0.3 A cm−2, the general cell behavior will not be altered at higher current densities due to inverse relationship between cell performance and waste heat generation. The present work elucidates the complex interplay among increase in coolant flow rate, increase in MEA temperature, voltage drop, and change in local current density distribution when a PEM fuel cell malfunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.