Abstract
The paper considers the problem of accurate calculation of the phase of the radar signal in relation to the receiving phased antenna arrays. Methods for determining the phase difference based on a comparison of the received signal with the local oscillator signal are listed, as well as a method based on the use of a radio-photon analog-to-digital converter for the output signal of the receiving phased antenna array. Their disadvantages are indicated. A method and a radio photon device are proposed that are devoid of these disadvantages. The method allows you to calculate the phase difference of the radar signal at the output of the electro-optical modulator and the output signal of the photodetector, taking into account the known values of the amplitudes and phase difference of the microwave signals at the input of the receiving elements of the phased antenna array. The radio-photon device allows you to implement this method and, unlike the known analogues, is based on the use of two parallel-connected electro-optical modulators constructed according to the scheme of the Mach-Zehnder interferometer. It is shown that the proposed radio photon device provides a higher accuracy of determining the phase of the radar signal in comparison with existing analogues. At the end of the work, an analysis of the results of experimental studies using the proposed method and a radio photon device is presented. According to the results of the experiment, it was found that the phase and phase differences vary linearly, and their maximum reaches π. In addition, the square of the amplitude of the optical signal at the input of the photon-electronic unit is proportional to the phase difference and inversely proportional to the ratio of the amplitudes of the output signals of the adjacent receiving elements of the phased antenna arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.