Abstract
Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern.The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1m thick water-shielded door as well as an emergency access/egress maze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.