Abstract

In this work, copper (II) ions were saturated and copper oxide nanoparticles (CuO NPs) were supported in natural zeolite from Chile; this was achieved by making the adsorbent material come into contact with a copper ion precursor solution and using mechanical agitation, respectively. The kinetic and physicochemical process of the adsorption of copper ions in the zeolite was studied, as well as the effect of the addition of CuO NPs on the antibacterial properties. The results showed that the saturation of copper (II) ions in the zeolite is an efficient process, obtaining a 27 g L-1 concentration of copper ions in a time of 30 min. The TEM images showed that a good dispersion of the CuO NPs was obtained via mechanical stirring. The material effectively inhibited the growth of Gram-negative and Gram-positive bacteria that have shown resistance to methicillin and carbapenem. Furthermore, the zeolite saturated with copper at the same concentration had a better bactericidal effect than the zeolite supported with CuO NPs. The results suggested that the ease of processing and low cost of copper (II) ion-saturated zeolitic material could potentially be used for dental biomedical applications, either directly or as a bactericidal additive for 3D printing filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call