Abstract

Anisotropy is a crucial characteristic of metamorphic rocks whereby minerals oriented in a preferential direction can originate mineral foliation. Inherent anisotropy can affect the rock behaviour significantly. Transverse isotropy is a particular case of anisotropy where foliation planes are distributed in the rock mass. Therefore, in this study the anisotropy effect on the elastic properties of a foliated phyllite is considered. To this end, a series of laboratory tests was programmed. Triaxial tests were carried out under confining pressures up to 20 MPa. Elastic parameters such as elasticity modulus, E, and Poisson's ratio, ν, are assessed from triaxial test results as well as from ultrasonic tests, where compression and shear wave velocities are determined. Empirical relationships for elastic parameters are suggested as a function of foliation angle, β, and confinement. In addition, anisotropy indexes are adopted to evaluate results, comparing when possible with those of previous works. It was found that E increases with confinement; however, the effect of anisotropy on E reduces with confinement. It was also found that ν is affected by β but not by confinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.