Abstract

To increase the effectiveness and immunogenicity of modern vaccines, especially subunit ones, it is required to use adjuvants. Polysaccharides, due to their safety and biocompatibility, are desirable candidates for the creation of vaccine adjuvants. The aim of our study was to develop a method for obtaining beta-Glucans from the yeast Saccharomyces cerevisiae cell wall, and evaluate their adjuvant properties. The high purity and non-toxicity of the resulting preparation was achieved by using enzyme complexes of cellulase and protease in combination with ultrasound (22 kHz) at the purification stage. The developed scheme allows for the yield of beta-Glucans up to 2 g from 100 g of the biomass of wet cells. The adjuvant properties of beta-Glucans were studied in 50 male BALB/c mice, weighing 16–18 g. Immunization was performed twice, with a 14-day interval, intramuscularly, 200 μl per animal. The recombinant receptor-binding domain (RBD) of the surface S protein of the SARS-CoV-2 virus (Wuhan-Hu-1 and B.1.617.2 (Delta)) was used as an antigen, at a dose of 50 μg per animal. A positive control group was administered with the antigen combined with aluminum hydroxide. As a negative control, mice injected with the saline solution were used. The titers of specific antibodies in the blood sera were determined by ELISA assays. RBD (Wuhan-Hu-1 and Delta), and S protein (Wuhan-Hu-1, Delta and Omicron) were used as antigens. The titers of virus-neutralizing antibodies were measured in neutralization tests using SARS-CoV-2 virus strains Wuhan-Hu-1, Delta (B.1.617.2) and Omicron (B.1.1.529). The results of the study have shown that beta-Glucans have the ability to enhance the production of specific and virus-neutralizing antibodies in mice immunized with RBD. The titers of specific and virus neutralizing antibodies are comparable to their levels in the group immunized with RBD and Al(OH)₃. It has been found in the experiments in white outbred ICR mice that the preparation belongs to practically non-toxic substances. Therefore, it can be concluded that the use of beta-Glucans could become a preferable alternative to the conventional adjuvants based on aluminum salts, being biocompatible, biodegradable and non-toxic substances of low labor-intensive production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call