Abstract

By combining the crystalline orientation distribution with a hardening evolution equation, a new elastic/crystalline viscoplastic material model is established. We focus our discussion on looking primarily at the texture effects on the strain localization of limit dome height (LDH) tests which are simulated using our Dynamic-Explicit finite element code. Three crystalline models in addition to the classical plastic potential and associated flow law model (J2F) are employed. The results demonstrate that, according to our failure criterion, the random orientation model shows the earliest indication of failure. The better formability is obtained for aluminum alloy 6111-T4 and cube texture models than the random crystalline orientation model. The J2F model shows no signs of strain localization. A comparison between numerical results also confirms that the strain localization region and crystalline rotation are different, due to the crystalline orientation distribution, which is initially set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call