Abstract

Transient heat pulses with triangular, square, and ELM-like temporal shapes are investigated in order to further understand how transient plasma instabilities will affect plasma facing components in tokamaks. A solution to the 1D heat equation for triangular pulses allows the peak surface temperature to be written analytically for arbitrary rise times. The solution as well as ANSYS simulations reveal that a positive ramp (maximum rise time) triangular pulse has a higher peak surface temperature by a factor of compared to that from a negative ramp (rise time = 0) pulse shape with equal energy density, peak power, and pulse width. Translating the results to ITER, an ELM or disruption pulse with the shortest rise time is the most benign compared to other pulse shapes with the same peak heat flux and same energy density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.