Abstract
Charge transport and electron emission properties in polypropylene and its nanocomposites filled with nanoclay particles submitted to an electron irradiation, in a Scanning Electron Microscope (SEM), are investigated using induced displacement and leakage currents. The measurements have been performed at various temperatures ranging from 20°C to 75°C at a primary beam energy of 20keV and a primary beam current of 1nA with the aim to highlight the effect of temperature and nanoclay content on these properties. The results show, at a given temperature, that the incorporation of clay in polypropylene (PP) matrix paradoxically leads to a concomitant increase in the electrical conductivity and the charge accumulated. In contrast, if the clay content is fixed, there is an increase in conductivity and a reduction of the charge accumulated when the temperature increases. The mobility of charge carriers and the corresponding activation energy are deduced from the measured leakage current during discharging step. The mobility was found to be an order of magnitude higher for the nanocomposites. The study of the influence of the temperature and nanoclay concentration on electron emission yield is also addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.