Abstract
This work investigated the performance of butyraldehyde decomposition with the help of dielectric barrier discharge (DBD) plasma coupled with photocatalysis (TiO2 + UV) at room temperature. Effects of flow rate and initial butyraldehyde concentration on the decomposition and the distribution of byproducts were examined and discussed. The combination of these two technologies led to an enhancement of butyraldehyde abatement compared to the separate systems at pilot scale from 5 to 10 m3 h−1 of flowrate. The synergy factor due to combination processes ranged from 1.13 to 1.27. In the same way, CO2 selectivity was significantly improved when compared to the DBD plasma alone. In this research, DBD plasma system and an immobilized TiO2 photocatalysis system is sequentially combined to oxidize the target pollutant. Indeed, different ways to combine sequentially DBD plasma with photocatalytic materials are listed. Results at pilot scale showed that when photocatalyst is placed in the post discharge, the performance of sequential coupling plasma–photocatalyst process is improved in term of decomposition, by-products formation and energy yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.