Abstract
Symmetry has been studied in both propositional calculus and discrete constraint satisfaction problems. This has been shown to reduce considerably the search space. In this paper, we extend the study to qualitative interval networks. We provide experimental tests on the performances of a variant of Ladkin and Reinefeld's search algorithm in the following two cases: (1) the algorithm as provided by its authors, with no advantage of symmetry, and (2) the algorithm to which is added symmetry detection during the search. The experiments show that symmetries are profitable for hard problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.