Abstract

In order to study surface roughness, surface morphology, surface microhardness, and surface residual stress, single-factor and central combination high-speed milling testing of SiCp/Al composites was carried out using a PCD tool under cryogenic liquid nitrogen cooling conditions. The test results show that the surface roughness value gradually increases with an increase in feed or milling depth, and the interaction between the two can make this phenomenon more serious. When the milling speed changes at 200~360 m/min, the surface microhardness and surface residual stress first increase, and then, become smaller, so it is recommended to use a speed above 240 m/min for milling under cryogenic liquid nitrogen cooling conditions. With an increase in milling depth and feed, the degree of surface microhardness is significantly improved, and the residual compressive stress also has a tendency to convert to residual tensile stress. In addition, it can be seen from the simulation results that as the milling depth and feed per tooth increase, the interference effect of the SiC particles on internal residual stress transfer also increases. Therefore, it is not recommended to use both high milling depths and high feed per tooth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call