Abstract

The presented work aims to realize the surface enhanced Raman scattering (SERS) signal of rhodamine 6G (Rh 6G) molecule by non-selectively filling all the holes of hollow core photonic crystal fiber (HC-PCF) while exploiting the bandgap property of HC-PCF. As a consequence, strong mode field overlap with the analyte solution is achieved resulting in an amplified Raman signal with just a few milliwatts (~2mW) of sample energy within the fiber core. The actual contribution of enhancement by HC-PCF has been deconvolved from that of nanoparticles in the overall Raman signal enhancement of Rh 6G. Finally, we report the enhancement factor of Raman signal of Rh 6G, filled within the different lengths of HC-PCF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call