Abstract

Superconductivity in bismuth-based high-Tc superconducting materials attracts the researchers for their unique properties. Bismuth-based superconductors commonly called BSCCO have great importance among the superconducting family. These are divided into three phases among them 2223 phase is highly studied in order to investigate its superconducting properties by substitution of different elements. We have studied the substitution of cerium (Ce) on the calcium site of bismuth-based Bi(Pb)Sr(Ba)-2223 high-Tc superconductor. The nominal compositions of Bi1.6Pb0.4Sr1.6Ba0.4(Ca1−xCex)2Cu3Ox ceramic superconductor were prepared by the sol–gel method. X-ray diffraction (XRD) was done at room temperature for structural analysis and different parameters were calculated. Surface morphology was done by scanning electron microscopy (SEM). DC resistivity measurements for the transition temperature of synthesized superconducting samples were taken by the standard four-probe method, apparatus for which was developed in our laboratory. Current density measurements were also taken by the same apparatus. The synthesized superconducting samples were also characterized by thermogravimetric analysis (TG) and Fourier transformation infrared radiations (FTIR). It is observed that the substitution of cerium on the calcium site favors the formation of single high-Tc 2223 phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call