Abstract

In this study, the simultaneous removal of ammonium and sulfate was detected in a self-designed circulating flow reactor, in which ammonium oxidization was combined with sulfate reduction. The highest removal efficiencies of NH4 +-N and SO4 2-S were 92% and 59.2%. NO2 - and NO3 - appeared in the effluent, and experimental studies showed that increasing the proportion of N/S in the influent would increase the NO2 - concentration in the effluent. However, N/S [n(NH4 +-N)/n(SO4 2-S)] conversion rates during the experiment were between 2.1 and 12.9, which may have been caused by the experiment's complex process. The microbial community in the sludge reactor included Proteobacteria, Chloroflexi, Bacteroidetes, Chlorobi, Acidobacteria and Planctomycetes after 187 days of operation. Proteobacteria bacteria had a more versatile metabolism. The sulfate-reducing ammonium oxidation (SRAO) was mainly due to the high performance of Proteobacteria. Nitrospirae has been identified as the dominant functional bacteria in several anammox reactors used for nitrogen removal. Approximately 12.4% of denitrifying bacteria were found in the sludge. These results show that a portion of the nitrogen was converted by nitrification-denitrification, and that traditional anammox proceeds simultaneously with SRAO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.