Abstract

The work is devoted to the study of technology that can be used to obtain lithium-containing ceramics of the Li2+4xZr4−xO3 type using the method of solid-phase synthesis combined with thermal annealing at a temperature of 1500 °C. A distinctive feature of this work is the preparation of pure Li2ZrO3 ceramics with a high structural ordering degree (more than 88%) and density (95–97% of the theoretical density). During the study, it was found that a change in the content of initial components for synthesis does not lead to the formation of new phase inclusions; however, an increase in the LiClO4·3H2O and ZrO2 components leads to changes in the size of crystallites and dislocation density, which lead to the strengthening of ceramics to external mechanical influences. The results of the measurements of thermophysical characteristics made it possible to establish that the compaction of ceramics and a decrease in porosity lead to an increase in the thermal conductivity coefficient of 3–7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call