Abstract

Manganese-doped cadmium sulphide semiconductor nanoparticles (CdS: Mn) NPs have been created utilizing a microwave-assisted solvothermal technique at different Mn concentrations (0, 1%, 3%, and 5%). The chemicals utilized for the preparation of Mndoped CdS nanoparticles were sodium sulphide (Na2S.xH2O), manganese chloride (MnCl2.4H2O), and cadmium acetate (CH3COO)2Cd., H2O). To determine the structural dimensions of the generated nanoparticles, the Debye-Scherer equation was used to calculate the average crystallite size at the full-width half maximum (FWHM) of the diffraction peaks. FTIR spectra analysis was used to look at the various functional and vibrational groups present in the Mn-doped CdS nanoparticle sample. The structure features of the produced nanoparticles have been examined using X-ray diffraction patterns. Energy dispersive X-rays were employed to ascertain the chemical composition of the synthesized nanoparticles. The optical properties and quantification of the energy band gap of the nanoparticles have been done using UV-V spectroscopy. According to XRD calculations, the cubic zinc-blend structure of the generated NPs had a crystal size of between 4 and 7 nm. By using EDX spectroscopy, the incorporation of Mn at the CdS lattice was confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call