Abstract
Image-based finite element analysis (FEA) has been considered an effective computational tool to predict hip fracture risk. The patient specific FEA gives an insight into the inclusive effect of three-dimensional (3D) complex bone geometry, and the distribution of inhomogeneous isotropic material properties in conjunction with loading conditions. The neck region of a femur is primarily the weakest in which fracture is likely to happen, when someone falls. A sideways fall results in the development of greater tensile and compressive stresses, respectively, in the inferior and superior aspects of the femoral neck, whereas the state of stress is reversed in usual gait or stance configuration. Herein, the variations of stresses have been investigated at the femoral neck region considering both single-stance and sideways fall. Finite element models of ten human femora have been generated using Quantitative Computed Tomography (QCT) scan datasets and have been simulated with an equal magnitude of load applied to the aforementioned configurations. Fracture risk indicator, defined as the ratio of the maximum compressive or tensile stress computed at the superior and inferior surfaces to the corresponding yield stress, has been used in this work to measure the variations of fracture risk between single-stance and sideways fall. The average variations of the fracture risk indicators between the fall and stance are at least 24.3% and 8% at the superior and inferior surfaces, respectively. The differences may interpret why sideways fall is more dangerous for the elderly people, causing hip fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.