Abstract
This article belongs to a series where the influence of anisotropic pressure on gravitational properties of rigidly rotating fluids is studied using new exact solutions of GR constructed for the purpose. For mathematical simplification, stationarity and cylindrical symmetry implying three Killing vectors are considered. Moreover, two pressure components are set to vanish in turn. In Papers I and II, the pressure is axially directed, while it is azimuthal in Paper III. In present paper (Paper IV), a radially directed pressure is considered. Since a generic differential equation, split into three parts, emerges from field equations, three different classes of solutions can be considered. Two could only be partially integrated. The other one, which is fully integrated, yields a set of solutions with a negative pressure. Physical processes where a negative pressure is encountered are depicted and give a rather solid foundation to this class of solutions. Moreover, these fully integrated solutions satisfy the axisymmetry condition, while they do not verify the so-called “regularity condition.” However, since their Kretschmann scalar does not diverge on the axis, this feature must be considered as reporting a mere coordinate singularity. Finally, the matching of these solutions to an exterior appropriate vacuum enforces other constraints on the two constant parameters defining each solution in the class. The results displayed here deserve to be interpreted in light of those depicted in the other four papers in the series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.