Abstract

A comprehensive study of the bulk ~400 µm thick GaN samples, grown by HVPE technology on AT-GaN seeds, and containing different carbon doping is reported. Spectroscopy of point centres has been implemented by combining several contactless/optical techniques: time resolved photoluminescence (TR-PL), microwave probed photoconductivity (MW-PC) transient and pulsed-photo-ionization spectroscopy (PPIS) techniques, together with steady-state PL (SS-PL) and transmission spectral measurements. The dynamics of the non-radiative and radiative recombination dependent on the excess carrier density and incorporated carbon concentration has been revealed. The cross-section of the photon-electron interaction and broadening factors due to electron-phonon coupling have been evaluated for various centres. Profiling of the excess carrier decay transients by scanning a wafer-edge boundary has been employed for estimation of surface recombination velocity. The asymmetry of surface recombination in heavily carbon doped samples has been corroborated by SS-PL intensity changes when comparing spectra recorded by exciting the opposite wafer surfaces using UV light. It has been inferred that the surface and bulk non-radiative recombination with 70 ns carrier lifetime is efficient only within initial stages of MW-PC and TR-PL transients. Several traps, tentatively attributed to CNON, CN, CI, VGa point defects, have been deduced from pulsed photo-ionization spectroscopy. The CN- defect appeared to be the most efficient in redistribution of the radiative recombination. For these centres, the parameters such as the photon-electron interaction cross-section, broadening factor due to electron-phonon coupling, and concentration have been evaluated for GaN samples, carbon doped with different levels. The CNVGa, CICGa, CGaVN complexes have also been implied by considering TR-PL and SS-PL spectra. The conversion from absorption to emission spectra has been revealed and explained based on van Roosbroeck-Shockley approach. The long-tail photoluminescence decay with durations up to tens of ms has been explained by nearly resonant photo-ionization and photoluminescence transitions in sequence of self-sustaining processes when local excitation travels by hopping over the re-absorption lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.