Abstract

Evapotranspiration is significantly affected by global climate changes as an essential component of both climate and hydrological cycles. Comprehensive analyses of the spatiotemporal changes of ETo enhance the understanding of hydrological processes and improve water resource management. The main objective of this study is to investigate and predict the temporal trend and spatial distributions of the mean maximum temperature (Tmax), the mean minimum temperature (Tmin) and reference evapotranspiration (ETo) during 1961-2014, 2021-2050 and 2051-2080 over Khorasan Razavi Province using CRUTS3.23 dataset and the outputs of four CMIP5 climate models. The results were as follows: (i) the ability of CRU dataset in simulating monthly mean of Tmax and Tmin is suitable, (ii) generally, ETo increased from north to south across the province (ii) from 1961 to 2014, annual ETo exhibited an increasing continuous trend across the area under study (iii) the mean annual minimum temperature projected to increase by 1.6 under RCP4.5 and RCP8.5 scenarios during two future periods. During 2051-2080, this variable will have an increase by 3ᵒ C under RCP8.5 scenario. The maximum temperature will increase by 4ᵒ C during the middle future period under RCP8.5 scenario. (v) The difference between mean annual ETo values of two periods was statistically significant in all grid points covering this province. The results showed that these increases may lead to the increase in crop water requirements and aggravate the water shortage in this area in view of the increase in ETo in response to ongoing climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.