Abstract

Sonoporation is the ultrasound-induced membrane porosity and has been investigated as a means for intracellular drug delivery and nonviral gene transfection. The dynamic characteristics of sonoporation, such as formation, duration and resealing of the pores in the cell membrane, determine the process of intracellular uptake of molecules or agents of interest that are otherwise obstructed by the cell membrane barrier. Sonoporation dynamics is also important for postultrasound cell survival. In this study, we investigated the effects of ultrasound duty cycle on sonoporation dynamics using Xenopus oocyte as a model system. Transducer with a center frequency of 0.96 MHz was used to generate pulsed ultrasound of desired duty cycle (5%, 10% and 15%) at a pulse repetition frequency of 1 Hz and an acoustic pressure of 0.4 MPa in our experiments. Employing voltage clamp techniques, we measured the transmembrane current as the direct result of decreased membrane resistance due to pore formation induced by ultrasound application. We characterized the sonoporation dynamics from these time-resolved recordings of transmembrane current to indicate cell membrane status, including pore formation, extension and resealing. We observed that the transmembrane current amplitude increased with increasing duty cycle, while the recovering process of membrane pores and cell survival rate decreased at higher duty cycles. (E-mail: cheri.deng@cwru.edu)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.