Abstract

The stoichiometric protonation constants (log β) of some disubstituted aniline derivatives in ethanol–water mixtures (0–90% ethanol by volume) at 25.0 ± 0.1°C were firstly submitted to factor analysis in order to obtain the number factors which affect the variation of the whole data sets and, afterwards, submitted to target factor analysis to identify these factors. The influence of solvatochromic parameters in the interactions between aniline derivatives and the solvent studied was identified and quantified. The general equation of Kamlet and Taft was reduced for these mixtures to two terms using combined factor analysis (FA) and target factor analysis (TFA): the independent term and the hydrogen-bond donating ability, α (HBD), solvatochromic parameters. Further, the quasi-lattice quasi-chemical (QLQC) theory of preferential solvation has been applied to quantify the preferential solvation by water of electrolytes in ethanol–water mixtures. The effects of the substituents on the protonation constants, the additivities of these effects, and the applicability of the Hammett equation to the behavior of substituents are also discussed. Further, Hammett’s reaction constant for the protonation of disubstituted anilines has been obtained for all the solvent mixtures and correlates well with α (HBD) of the solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call