Abstract

We report here our study on ultrafast spectral dynamics in the interior of SNase using picosecond-resolved emission spectra of tryptophan through site-directed mutagenesis. By probing the solvation dynamics in the nucleotide binding pocket and the Ca 2+ binding pocket as well as in the interior of hydrophobic core, two robust relaxation time scales on a few picoseconds and on tens of picoseconds have been observed. Both two time scales are strongly correlated with local structural and chemical properties of protein. These distinct differences in solvation dynamics reflect the intimate relationship between the dynamic structures and the functions of enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call