Abstract

Mold flux solidification and heat transfer experiments under both non-oscillation and oscillation modes have been conducted and compared with the help of Mold Flux Heat Transfer Simulator (MFHTS) technique. The results suggested that the steady-state responding heat flux in the mode of oscillation is smaller than that in non-oscillation operation, and a transition time is observed in the responding temperature and heat flux profiles during the oscillation experiments. The oscillation of mold would introduce the roughness of slag film surface and the enlargement of air gap at the interface of mold/flux film; thus, the interfacial thermal resistance was enhanced. In addition, the thermal conductivity of solid crystalline mold flux and mold/flux film interfacial thermal resistance at steady state were calculated in this work. The thermal conductivity of crystalline mold flux was about 1.43 to 1.76 W m−1 K−1, and the interfacial thermal resistance R int in oscillation operation was calculated as 17.3 to 22.5 × 10−4 m2 (K W−1) in the measured region. The obtained interfacial thermal resistance R int in this work is higher than that in non-oscillation operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.