Abstract

In this study, the performance of AISI D2 steel subjected to solid particle erosion tests was analysed. This material has applications for tools and dies for blanking, wood milling cutters, cold-extruding and other operations requiring high compressive strength and excellent wear resistance. The erosion tests performed by using a rig developed according to some parameters of the ASTM G76-95 standard. Two abrasive were used, angular silicon carbide (SiC) and steel round grit, both, with a particle size of 400–420 μm. This allowed comparing the erosion severity of each abrasive particle. The tests were conducted using four different incident angles 30, 45, 60 and 90° with a particle velocity of 24±2 m s−1 and a flow rate of 21±2·5 g min−1 for silicon carbide and 48·5±3·5 g min−1 for the steel round grit. The exposure testing time was 10 min. Subsequently, the surface damage was analysed with a scanning electron microscope (SEM) to identify the wear mechanisms. Additionally, atomic force microscopy (AFM) was conducted in order to obtain roughness of the surface damage at 60°. The results indicated that higher amount of mass loss was obtained by angular silicon carbide particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.