Abstract

The six coordinated CoIIIoxophlorin have been studied with imidazole, pyridine and t-butylcyanide as axial ligands using B3LYP, BV86P and MO6-2X methods. Conversion between two isomers [(L)2CoIII(PO)][Formula: see text] and [(L)2CoIII(PO)][Formula: see text] can be occurred at various spin multiplicities, namely singlet, triplet and quintet states. L is employed to show axial ligand namely, imidazole or pyridine. London forces have a basic role in the stability of the mentioned complexes due to non-specific solvent effects. The latter fact has been obtained using the PCM model. Also, it is specified that minimum geometries have not been obtained for some parallel or perpendicular six-coordinated complexes with special axial ligands at a finite spin state. The B3LYP method indicates that one and three [Formula: see text]-electron can be found on the Co atom in every optimized complex at triplet and quintet spin states, respectively. Also, another [Formula: see text]-electron is placed on the ring of oxophlorin. This fact is obtained for different isomers of [(IM2(CoIII(PO)] and [(Py)2CoIII(PO)] at triplet and quintet spin states, while these complexes are optimized using B3LYP. Besides, results obtained from B3LYP show that the most stable state for six coordinated CoIIIoxophlorin with any axial ligand is the singlet state. Based on crystal field theory and molecular orbital theory, electron configuration and hybridization of cobalt in [(IM)2CoIII(PO)] at singlet state can be written as t2g6 eg0 and sp3d2, respectively. Former electronic configuration indicates a strong field with low spin for d orbitals of cobalt, and latter hybridization is expected for a metal with a coordination number of 6 in a complex with Oh symmetry. The results obtained are completely satisfied by NBO analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call