Abstract

Although silicide oxidation was studied 20 years ago, the interest in obtaining a robust process for new applications remains significant today. Indeed, the new architectural development process requires dense and narrow spaces. In this study, attempts were made to bury a silicide layer under a protective silica layer in order to keep the physical and electrical properties of the silicide constant after oxidation. Thus, we first tried to reproduce and study these conditions and, once acquired, aimed to decrease the oxidation temperature in order to meet industrial requirements. Titanium (Ti) and nickel (Ni) were chosen for their metallurgical interest and their integration capability in devices. Four different groups of silicide (TiSi, TiSi2, Ni2Si, NiSi) were targeted by adjusting the temperature. Then, all of the silicides, including one pure Si wafer, were oxidized using dry, wet and plasma techniques. In situ scanning electron microscopy, spectroscopic ellipsometry and X-ray reflectivity measurements were carried out simultaneously before and after oxidation of the silicide to characterize the SiO2 and silicide morphology, thickness and density. We found that after 800 °C dry oxidation, Ti silicide was totally oxidized, which was an unexpected result. But, Ni silicide showed an agglomeration phenomenon after 500 °C and 800 °C dry oxidation. Although, after wet oxidation, it was confirmed that the highest SiO2 thickness formed, the NiSi surface roughness was higher. In the case of plasma oxidation, we obtained a thin layer (≈ 1 nm) of SiO2 on NiSi with an extremely smooth surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.