Abstract

Influence of electron excited singlet delta oxygen (SDO) molecules produced in direct current (DC) glow discharged plasma on the induction length decrease in the H2–O2 mixture has been studied via comprehensive two-dimensional (2D) numerical simulations. The sensitivity analysis of the induction length on SDO mole fractions and residual mole fractions of odd oxygen was carried out. The influence of the reaction H2 + O2(1Δg) → H + HO2 on the ignition length was found to be negligible due to the presence of residual odd oxygen in the oxidizer flow. Two stages specify the ignition time decrease for the studied conditions: (1) chain initiation in reactions with residual odd oxygen and (2) the following chain-branching enhancement due to reaction H + O2(1Δg) → O + OH. The last reaction is the key process for studied conditions when the concentration of SDO exceeds 4%. The estimated rate constant of this reaction was found to be about 2.5 · 10−13 cm3/s at 780 K. The quenching reaction H + O2(1Δg) → H + O2 does not affect the ignition length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.