Abstract
Physical simulation of a single-power, two-circuit electroslag remelting (ESR) process with current conductive mold (ESR-STCCM) is carried out in this paper. Wood alloy and sodium chloride solution are used to study the current distribution ratio of passing electrode and conductive part of current carrying mold (conductor). A conventional ESR (CESR) process has been studied as a comparison. The total current of ESR-STCCM is larger than the CESR process, which indicates that the resistance in ESR-STCCM is smaller than in CESR. Results show that the ratio of I electrode/I conductor changes with filling ratio, electrode immersion depth, and effective conductor height. Electrode immersion depth plays an important role on the current distribution ratio. Nevertheless, the effective conductor height has a little influence on the current distribution ratio. A larger filling ratio has an obvious effect on the current distribution ratio in ESR-STCCM. Current flowing through the electrode increases with the increasing of electrode immersion depth under a certain filling ratio. The physical model established can provide an important direction to real ESR-STCCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.