Abstract

In this study, we report first time the effect of laser pulse repetition frequency and pulse width of femtosecond laser radiation on silicon nanofibrous structure formation under ambient condition. Surface nanotexture analysis revealed the changes in fibrous structure density and size in respect of laser pulse width and repetition frequency. A phonon confinement model is used to explain the Raman spectra of processed specimens in order to understand the structure details of nanofibrous structure and hence to support the surface nanotexture analysis. The present investigation leads to a conclusion that nanofibrous structure is formed due to the aggregation of silicon nanoparticles and their size is estimated using the confinement model which is in the order of few nanometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.