Abstract

For devices of bonded silicon and glass structures fabricated by deep reactive ion etching (DRIE), it is important to avoid damage at the silicon sidewall and backside during through-wafer etching in order to ensure reliability of devices. The silicon damage caused by charge accumulation at the glass surface is inhibited by means of an electrically conducting layer patterned onto the glass and connected with the silicon. In this study, indium tin oxide films were applied in order to identify the positions of silicon damage in the structural layout without destruction of samples. From the results, we report that there exists silicon damage caused by charge accumulation at the silicon islands divided by DRIE and we present important rules for mask layout when utilizing this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.