Abstract

Signal-to-background ratio of surface-enhanced Raman scattering (SERS) plays an important role in the analytic applications of SERS. Its dependences on excitation wavelength and gap between metal particles were studied theoretically and experimentally. We show that this ratio is higher at smaller gaps for the same excitation wavelength and is higher for the wavelengths having higher values of the absolute values of the dielectric function of the metal. This study thus results in design guidelines in the fabrication of SERS-active substrates with high signal-to-background ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.