Abstract

Abstract In this work, delineation of crystal defects in Si by preferential chemical etching (Wright etch) is discussed. Investigation of defects in Si wafers by preferential chemical etching enables the study of various types of crystal defects for large area defect distribution (up to full wafer) and root cause analysis. In the case of dislocation defects, the shapes of etch pits are different for different etching duration. We show the mechanism of the pit shape evolution under preferential etching and suggested the appropriate etching duration for defect type identification with inspection by optical microscopes. The dislocation delineation method has been applied to a case of functional failure of devices caused by abnormal process in Laser Scanning Annealing (LSA). It was shown that the distribution of dislocation defects depends largely on the direction of LSA scan direction. We discuss the relationship between dislocation defect distribution and the density and uniformity of the active-Si patterns as well as possible solutions for elimination of dislocation defects in LSA process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call