Abstract

This paper aims to investigate numerical study onto the behavior of modified push-off specimens under the action of direct shear stress. Based on the tow-dimensional finite element model developed in this research, the contribution of the aggregate interlock to resist the shear stress along the shear plane, the effect of existing of the compressive stress acting across the shear plane, the effect of the parallel reinforcement in resisting shear stress, the effect of the shear reinforcement parameter, the strains in the concrete and steel and the actual distribution of the shear stress along the shear plane were studied. To verify the accuracy and applicability of the suggested finite element model, a comparison between the results obtained in this study and those obtained experimentally by other authors was carried out. Comparison showed that the finite element results were in good agreement with the experimental results. It has been found that, for modified push-off specimens of groups without shear reinforcement across the shear plane the diagonal tension crack within the shear plane occurred at the load level which is closely to the ultimate shear strength respectively, while for specimens with both shear and parallel reinforcement , the first crack formed at about (33.7% - 53.0%) of the ultimate strength , also the investigation showed that the presenting of the shear reinforcement normal to the shear plane are significantly increased the shear transfer stress for all levels of loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call