Abstract
Introduction: Analysis of electrical activity in the cortical neural network during the processing of visual information is one ofthe most interesting issues in modern neuroscience. The particular attention of the researchers is attracted by the study of neuralactivity during complex visual stimuli processing. Purpose: Studying the process of sensory information processing in the corticalneural network based on recorded electrical activity signals (EEG). Results: We have studied neural activity during visual informationprocessing based on the stimulus-related change in the spectral EEG energy in the 15–30 Hz frequency band. Using the developedapproach, we analyzed the influence of the visual stimulus complexity on the features of spatio-temporal neural activity. It has beenfound that at low complexity the spectral amplitude of the EEG in the range of 15–30 Hz increases mainly in the parietal zone. Withincreasing complexity, the spectral amplitude of the EEG increases simultaneously in different parts of the cortex, mainly in the frontalregion. Practical relevance: The identified features of neural dynamics can be used in the development of passive brain-computerinterfaces to monitor a person’s cognitive state and evaluate the cognitive load in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.